Abstract

Traditional simultaneous localization and mapping (SLAM) algorithms have been used to great effect in flat, indoor environments such as corridors and offices. We demonstrate that with a few augmentations, existing 2D SLAM technology can be extended to perform full 3D SLAM in less benign, outdoor, undulating environments. In particular, we use data acquired with a 3D laser range finder. We use a simple segmentation algorithm to separate the data stream into distinct point clouds, each referenced to a vehicle position. The SLAM technique we then adopt inherits much from 2D delayed state (or scan-matching) SLAM in that the state vector is an ever growing stack of past vehicle positions and inter-scan registrations are used to form measurements between them. The registration algorithm used is a novel combination of previous techniques carefully balancing the need for maximally wide convergence basins, robustness and speed. In addition, we introduce a novel post-registration classification technique to detect matches which have converged to incorrect local minima

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.