Abstract

Quadriceps dysfunction is important in chronic obstructive pulmonary disease (COPD), with an associated increased proportion of type II fibers. Investigation of protein synthesis and degradation has yielded conflicting results, possibly due to study of whole biopsy samples, whereas signaling may be fiber-specific. Our objective was to develop a method for fiber-specific gene expression analysis. 12 COPD and 6 healthy subjects underwent quadriceps biopsy. Cryosections were immunostained for type II fibers, which were separated using laser capture microdissection (LCM). Whole muscle and different fiber populations were subject to quantitative polymerase chain reaction. Levels of muscle-RING-finger-protein-1 and Atrogin-1 were lower in type II fibers of COPD versus healthy subjects (P = 0.02 and P = 0.03, respectively), but differences were not apparent in whole muscle or type I fibers. We describe a novel method for studying fiber-specific gene expression in optimum cutting temperature compound-embedded muscle specimens. LCM offers a more sensitive way to identify molecular changes in COPD muscle. Muscle Nerve 55: 902-912, 2017.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.