Abstract
This paper proposes a possible method using natural language processing that might assist in the FDA medical device marketing process. Actual device descriptions are taken and matched with the device description in FDA Title 21 of CFR to determine their corresponding device type. Both pre-trained word embeddings such as FastText and large pre-trained sentence embedding models such as sentence transformers are evaluated on their accuracy in characterizing a piece of device description. An experiment is also done to test whether these models can identify the devices wrongly classified in the FDA database. The result shows that sentence transformer with T5 and MPNet and GPT-3 semantic search embedding show high accuracy in identifying the correct classification by narrowing down the correct label to be contained in the first 15 most likely results, as compared to 2585 types of device descriptions that must be manually searched through. On the other hand, all methods demonstrate high accuracy in identifying completely incorrectly labeled devices, but all fail to identify false device classifications that are wrong but closely related to the true label.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.