Abstract
BackgroundThe rising global elderly population increases the demand for caregiving, yet traditional methods may not fully assess the challenges faced by vital informal caregivers. ObjectiveTo investigate the efficacy of Large Language Model (LLM) in detecting overburdened informal caregivers, benchmarking against rule-based and machine learning methods. Methods1,791 eligible informal caregivers from Southern Taiwan and utilized their textual case summary reports for the LLM. We also employed structured questionnaire results for machine learning models. Furthermore, we leveraged the visualization of the LLM's attention mechanisms to enhance our understanding of the model's interpretative capabilities. ResultsThe LLM achieved an Area Under the Receiver Operating Characteristic (AUROC) curve of 0.84 and an Area Under the Precision-Recall Curve (AUPRC) of 0.70, marking an 8% and 14% improvement over traditional methods. The visualization of the attention mechanism accurately reflected the evaluations of human experts, concentrating on descriptions of high-burden descriptions and the relationships between caregivers and recipients. ConclusionThis research demonstrates the notable capability of LLM to accurately identify high-burden caregivers in Long-term Care (LTC) settings. Compared to traditional approaches, LLM offers an opportunity for the future of LTC research and policymaking.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.