Abstract

The purpose of this study was to describe the dynamics of anaerobic oxidation of methane (AOM) coupled with sulfate reduction (SR) using experimental data from a continuous incubation experiments published earlier in order to show that formation of consortia of anaerobic archaea (ANME) and Desulfosarcina-like bacteria (DSS) may have a significant effect on sulfur isotope fractionation. The dynamic simulation of reversible AOM by ANME coupled with SR by DSS was performed. This simulation took into account biomass growth and fractionation of stable isotopes of sulfur. Two kinetic schemes with and without ANME + DSS consortium formation were tested. The respective models were applied at five influent methane concentrations. A good fit to experimental data was obtained only when assuming active ANME and DSS biomass accumulation. The assumption about incorporation of reversibility of anaerobic methane oxidation and sulfate reduction did not improve the model's fit to experimental data. In accordance with both the models, sulfur isotope fractionation was smallest for the highest influent methane concentration. The model considering the formation of consortia of ANME + DSS is proved to be more appropriate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.