Abstract

We describe an applied study of ICT students' employment in Estonia based on data from two national registries. The study offered an opportunity to compare results from both k-anonymised data as well as those from the novel Sharemind platform for privacy-preserving statistical computing, which offers a way to use confidential data for research without loss of information. Comparison of results using k-anonymized and lossless data indicate substantial differences in estimates of students' employment rates. The results illustrate, on the basis of a real-world study, how the effects of k-anonymization can lead to considerable bias in estimates. While privacy-preserving computing does entail inconveniences because original microdata is not revealed to the statistician, this can be offset by greater confidence in the results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.