Abstract

Empirical growth and yield models developed from historical data are commonly used in developing long-term strategic forest management plans. Use of these models rests on an assumption that there will be no future change in the tree growing environment. However, major impacts on forest growing conditions are expected to occur with climate change. As a result, there is a pressing need for tools capable of incorporating outcomes of climate change in their predictions of forest growth and yield. Process-based models have this capability and may, therefore, help to satisfy this requirement. In this paper, we evaluate the suitability of an ecological, individual-tree-based model (JABOWA-3) in generating forest growth and yield projections for diverse forest conditions across Nova Scotia, Canada. Model prediction accuracy was analyzed statistically by comparing modelled with observed basal area and merchantable volume changes for 35 permanent sample plots (PSPs) measured over periods of at least 25 years. Generally, modelled basal area and merchantable volume agreed fairly well with observed data, yielding coefficients of determination (r2) of 0.97 and 0.94 and model efficiencies (ME) of 0.96 and 0.93, respectively. A Chi-square test was performed to assess model accuracy with respect to changes in species composition. We found that 83% of species-growth trajectories based on measured basal area were adequately modelled with JABOWA-3 (P > 0.9). Model-prediction accuracy, however, was substantially reduced for those PSPs altered by some level of disturbance. In general, JABOWA-3 is much better at providing forest yield predictions, subject to the availability of suitable climatic and soil information.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call