Abstract
Surface defect detection is a vital process in industrial production and a significant research direction in computer vision. Although today’s deep learning defect detection methods based on computer vision can achieve high detection accuracy, they are mainly based on supervised learning. They require many defect samples to train the model, which is not compatible with the current situation that industrial defect sample is difficult to obtain and costly to label. So we propose a new unsupervised small sample defect detection model-ISU-GAN, which is based on the CycleGAN architecture. A skip connection, SE module, and Involution module are added to the Generator, enabling the feature extraction capability of the model to be significantly improved. Moreover, we propose an SSIM-based defect segmentation method that applies to GAN-based defect detection and can accurately extract defect contours without the need for redundant noise reduction post-processing. Experiments on the DAGM2007 dataset show that the unsupervised ISU-GAN can achieve higher detection accuracy and finer defect profiles with less than 1/3 of the unlabelled training data than the supervised model with the full training set. Relative to the supervised segmentation models UNet and ResUNet++ with more training samples, our model improves the detection accuracy by 2.84% and 0.41% respectively and the F1 score by 0.025 and 0.0012 respectively. In addition, the predicted profile obtained using our method is closer to the real profile than other models used for comparison.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.