Abstract

Understanding how point mutations affect the performance of protein stability has been the focus of several studies all over the years. Intrinsic fluorescence is commonly used to follow protein unfolding since during denaturation, progressive redshifts on tryptophan fluorescence emission are observed. Since the unfolding process (achieved by chemical or physical denaturants) can be considered as two-state N➔D, it is possible to utilize the midpoint unfolding curves (fU=50%) as a parameter to evaluate if the mutation destabilizes wild-type protein. The idea is to determine the [D]1/2 or Tm values from both wild type and mutant and calculate the difference between them. Positive values indicate the mutant is less stable than wild type.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.