Abstract

Hash join is used to join large, unordered relations and operates independently of the data distributions of the join relations. Real-world data sets are not uniformly distributed and often contain significant skew. Although partition skew has been studied for hash joins, no prior work has examined how exploiting data skew can improve the performance of hash join. In this paper, we present histojoin, a join algorithm that uses histograms to identify data skew and improve join performance. Experimental results show that for skewed data sets histojoin performs significantly fewer I/O operations and is faster by 10–60% than hybrid hash join.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.