Abstract

Roll compaction is a dry, continuous granulation process, which is widely used in the pharmaceutical, chemical, metallurgical, mineral and agricultural industries to produce dust-free and free-flowing agglomerates. Intelligent software has been used to predict the relationships between tablet formulations, roll compaction process parameters and the roll compacted ribbon, from which granules for tablet manufacture can be produced. The software exploits the strengths of artificial neural networks, genetic algorithms and fuzzy logic to predict multivariate relationships from experimental data. Input data were generated from material characterisation studies and from investigations conducted on a 20 cm diameter laboratory-scale roll press with side plates, where process parameters such as roll speed (1–5 rpm), roll gap (0.5–1.4 mm) and compaction pressure (up to 230 MPa) could be manipulated. The relative significance of inputs on various outputs such as ribbon properties, nip angle and maximum roll compaction pressure was investigated using the commercially available artificial intelligence software FormRules (Intelligensys, Teeside, UK). The important inputs and required outputs were subsequently used in the model-development software INForm (Intelligensys, Teeside, UK) so that the conditions necessary to produce ribbons with specific desired properties could be predicted.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.