Abstract

Objective: To study the changes of body surface temperature of Taekwondo athletes during overload training, and provide new ideas and means for athletes to evaluate their body response after overload training. Methods: The infrared thermography technique was used to monitor the body surface temperature of the chest and abdomen of the Taekwondo athletes, and the changes of body surface temperature were observed. The experiment used Beckman automatic biochemical analyzer to determine creatine kinase (CK) index. The experiment used the RPE scale to test the self-fatigue sensation. On the training day, the training starts at 9:00 am every day and the training is completed in 2 hours. The training starts at 14:00 in the afternoon and the training is completed in 2 hours. The morning training requires a minimum heart rate of 130 beats/min, and keeps it for more than 30 minutes. The training end time is 11:00; afternoon training requires a minimum heart rate of 170 beats/min, and maintained for more than 30 minutes, the training end time is 16:00. Results: The athletes’ sports injury parts increased significantly after exercise, which can indirectly reflect the athlete’s physical fatigue reaction state after overload training. Body surface temperature has a good consistency with creatine kinase (CK), heart rate, and body function response, indicating that body surface temperature values can replace creatine kinase (CK), heart rate, and self-physiological response, indicating that infrared thermography can be accurate. The physiological response status after overload training was assessed. Conclusion: The thermal imaging camera can accurately identify and analyze the injury and physiological response status of athletes. Infrared thermography studies show that the body surface temperature of athletes has a certain correlation with (CK); the body surface temperature and physiological fatigue response of athletes have certain Correlation law; the body surface temperature of the athlete has a correlation with the heart rate; the body surface temperature of the athlete’s sports injury site after the sports injury is significantly increased, which indirectly reflects the physical fatigue response of the athlete after overload training.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call