Abstract

Motivated by demand prediction for the custodial prison population in England and Wales, this paper describes an approach to the study of service systems using infinite server queues, where the system has non-empty initial state and the elapsed time of individuals initially present is not known. By separating the population into initial content and new arrivals, we can apply several techniques either separately or jointly to those sub-populations, to enable both short-term queue length predictions and longer-term considerations such as managing congestion and analysing the impact of potential interventions. The focus in the paper is the transient behaviour of the M t / G / ∞ queue with a non-homogeneous Poisson arrival process and our analysis considers various possible simplifications, including approximation. We illustrate the approach in that domain using publicly available data in a Bayesian framework to perform model inference.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call