Abstract
Object tracking in the presence of appearance variation and occlusion is a hot topic in research, many algorithms were proposed in recent years. Early contour tracking algorithms used particle filter in a high dimensional space. In practice, contour points can move independently, hence contour deformation forms a high dimensional deformation space. As a result, the application of particle filter is calculation expensive. In this paper, we address the problem of tracking contour in complex environments by involving subspace and a contour template. Specifically, our algorithm tracks the global motion and the local contour deformation separately. We track the global motion by weighted distance to subspace, which is adaptive to the complex environment variation by incremental learning, and then use contour model to track local deformation and evolve the contour to the edge points. The experimental results show that our method can track object contour undergoing partially occlusion and shape deforming, which verify the effectiveness of the proposed algorithm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.