Abstract

We are reporting a new methodology of using Raman spectroscopy for studying the drug surfactant interactions in self-emulsifying drug delivery systems (SEDDS). The physicochemical properties of surfactants could affect the performance of drugs from lipid delivery systems. Thus the purpose of our research was to study the drug surfactant interactions on a molecular level to understand the mechanism of supersaturation and precipitation inhibition. Two surfactants, Labrasol® and Vitamin E TPGS, were used to formulate several SEDDS. The optimized SEDDS were further evaluated by a kinetic solubility study and in situ Raman spectroscopy for two model drugs. It was found that both drugs precipitated from Labrasol® SEDDS whereas TPGS was able to inhibit precipitation and achieve high drug supersaturation levels. In situ Raman spectroscopy indicated that hydrogen bonding with TPGS was the main factor responsible for inhibiting precipitation. This study was able to correlate the structure and physicochemical properties of the drugs and surfactants to their ability to prevent drug precipitation. Our study brings up a possible new systematic approach by using Raman spectroscopy in the development and optimization of lipid based delivery systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call