Abstract
BackgroundConcussion may result in acutely impaired dynamic balance control that can persist up to two months post injury. Such impairment has been detected using sophisticated whole body center of mass kinematic metrics derived from camera-based motion analysis under a dual-task paradigm. However, wearable sensor kinematics for describing gait imbalance is lacking. MethodsThis study employed a longitudinal design. Gait balance control of acutely concussed and healthy matched control participants was assessed at five post-injury time points (within 72 h of injury, at one week, two weeks, one month, and two months). Tri-axial accelerations and angular velocities were collected with a dual-task gait protocol using an inertial measurement unit placed over the fifth lumbar vertebra. FindingsEight consistent gait event specific peak accelerations and six peak angular velocities measured by the inertial measurement unit were examined. Peak yaw and roll angular velocities at heel strike and peak roll angular velocities during early single-support, distinguished healthy from concussed participants across the two month post-injury period, while peak vertical acceleration at the end of terminal stance peak medial-lateral acceleration to the right during loading response showed promise. InterpretationUtilization of peak accelerations and angular velocities collected from a single inertial measurement unit placed over the fifth lumbar vertebra in a divided attention paradigm may offer a clinically feasible method for detecting subtle changes in gait balance control in concussed individuals.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.