Abstract

BackgroundStudying the effects of medications on endpoints in an observational setting is an important yet challenging problem due to confounding by indication. The purpose of this study is to describe methodology for estimating such effects while including prevalent medication users. These techniques are illustrated in models relating statin use to cardiovascular disease (CVD) in a large multi-ethnic cohort study.MethodsThe Multi-Ethnic Study of Atherosclerosis (MESA) includes 6814 participants aged 45-84 years free of CVD. Confounding by indication was mitigated using a two step approach: First, the untreated values of cholesterol were treated as missing data and the values imputed as a function of the observed treated value, dose and type of medication, and participant characteristics. Second, we construct a propensity-score modeling the probability of medication initiation as a function of measured covariates and estimated pre-treatment cholesterol value. The effect of statins on CVD endpoints were assessed using weighted Cox proportional hazard models using inverse probability weights based on the propensity score.ResultsBased on a meta-analysis of randomized controlled trials (RCT) statins are associated with a reduced risk of CVD (relative risk ratio = 0.73, 95% CI: 0.70, 0.77). In an unweighted Cox model adjusting for traditional risk factors we observed little association of statins with CVD (hazard ratio (HR) = 0.97, 95% CI: 0.60, 1.59). Using weights based on a propensity model for statins that did not include the estimated pre-treatment cholesterol we observed a slight protective association (HR = 0.92, 95% CI: 0.54-1.57). Results were similar using a new-user design where prevalent users of statins are excluded (HR = 0.91, 95% CI: 0.45-1.80). Using weights based on a propensity model with estimated pre-treatment cholesterol the effects of statins (HR = 0.74, 95% CI: 0.38, 1.42) were consistent with the RCT literature.ConclusionsThe imputation of pre-treated cholesterol levels for participants on medication at baseline in conjunction with a propensity score yielded estimates that were consistent with the RCT literature. These techniques could be useful in any example where inclusion of participants exposed at baseline in the analysis is desirable, and reasonable estimates of pre-exposure biomarker values can be estimated.

Highlights

  • Studying the effects of medications on endpoints in an observational setting is an important yet challenging problem due to confounding by indication

  • Randomized controlled clinical trials (RCTs) are a common and useful way to study the effects of medications on outcomes

  • When stabilized weights were used from a propensity model that included imputed pre-treatment cholesterol we found the Hazard Ratio (HR) for statins to be protective of coronary heart disease (CHD) with a HR = 0.74, 95% CI: 0.38, 1.42

Read more

Summary

Introduction

Studying the effects of medications on endpoints in an observational setting is an important yet challenging problem due to confounding by indication. The purpose of this study is to describe methodology for estimating such effects while including prevalent medication users These techniques are illustrated in models relating statin use to cardiovascular disease (CVD) in a large multi-ethnic cohort study. Observational studies often have different endpoints (e.g. advanced magnetic resonance imaging of heart size and function) that may not have been studied in an RCT, longer follow-up, unique populations, or some other inherent practical advantage for examining certain associations. This leads to the challenge of studying medication effects on endpoints in the observational setting, where issues of confounding by indication are challenging to deal with. In the case of statins, a widely prescribed cholesterol lowering medication [1], treated participants would on average be those with higher underlying cholesterol levels and greater cardiovascular risk factor burden

Objectives
Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.