Abstract

Online-to-offline (O2O) e-commerce supports online purchase and offline servicing. In recent years, with the growth of online shopping in China, O2O has become a new popular mode of e-commerce appliance. Buying online and returning offline are becoming a dominant shopping mode. The returns of customer should be collected to be treated in a more cost-efficient manner. To this end, this paper aims to propose an integer programming model to minimise the cost in construction couple with operating charges by optimising the sites of reverse logistics with the customer returns. For lowering storage costs, physical stores and their geographical sites should be far away from the residential area. In addition, this paper designs an improved genetic algorithm for solving two-stage heredity under random circumstance in that this model builds up multilayer reverse logistics network for recycling customer returns. Both the simulation and numerical examples prove the effectiveness and feasibility of this improved genetic algorithm.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.