Abstract
Researchers and policy makers are increasingly dissatisfied with the “average treatment effect.” Not only are they interested in learning about the overall causal effects of policy interventions, but they want to know what specifically it is about the intervention that is responsible for any observed effects. This discusses Peck's (2003) approach to creating symmetrically-predicted subgroups for analyzing endogenous features of experimentally evaluated interventions and then it identifies several possible extensions that might help evaluators better understand complex interventions. It aims to enrich evaluation methodologists’ toolbox, to improve our ability to analyze “what works” in addressing important questions for policy and program practice.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.