Abstract

After harvesting, salmon is sorted by species, size, and quality. This is generally manually done by operators. Automation would bring repeatability, objectivity, and record-keeping capabilities to these tasks. Machine vision (MV) and image analysis have been used in sorting many agricultural products. Four salmon species were tested: pink (Oncorhynchus gorbuscha), red (Oncorhynchus nerka), silver (Oncorhynchus kisutch), and chum (Oncorhynchus keta). A total of 60 whole fish from each species were first weighed, then placed in a light box to take their picture. Weight compared with view area as well as length and width correlations were developed. In addition the effect of "hump" development (see text) of pink salmon on this correlation was investigated. It was possible to predict the weight of a salmon by view area, regardless of species, and regardless of the development of a hump for pinks. Within pink salmon there was a small but insignificant difference between predictive equations for the weight of "regular" fish and "humpy" fish. Machine vision can accurately predict the weight of whole salmon for sorting.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.