Abstract

Montezuma Well is a natural spring located within a “sinkhole” in the desert environment of the Verde Valley in Central Arizona. It is managed by the National Park Service as part of Montezuma Castle National Monument. Because of increasing development of groundwater in the area, this research was undertaken to better understand the sources of groundwater to Montezuma Well. The use of well logs and geophysics provides details on the geology in the area around Montezuma Well. This includes characterizing the extent and position of a basalt dike that intruded a deep fracture zone. This low permeability barrier forces groundwater to the surface at the Montezuma Well “pool” with sufficient velocity to entrain sand-sized particles from underlying bedrock. Permeable fractures along and above the basalt dike provide conduits that carry deep sourced carbon dioxide to the surface, which can dissolve carbonate minerals along the transport path in response to the added carbon dioxide. At the ground surface, CO2 degasses, depositing travertine. Geologic cross sections, rock geochemistry, and semi-quantitative groundwater flow modeling provide a hydrogeologic framework that indicates groundwater flow through a karstic limestone at depth (Redwall Limestone) as the most significant source of groundwater to Montezuma Well. Additional groundwater flow from the overlying formations (Verde Formation and Permian Sandstones) is a possibility, but significant flow from these units is not indicated.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call