Abstract
Recently, a series of parallel loop self-scheduling schemes have been proposed, especially for heterogeneous cluster systems. However, they employed the MPI programming model to construct the applications without considering whether the computing node is multicore architecture or not. As a result, every processor core has to communicate directly with the master node for requesting new tasks no matter the fact that the processor cores on the same node can communicate with each other through the underlying shared memory. To address the problem of higher communication overhead, in this paper we propose to adopt hybrid MPI and OpenMP programming model to design two-level parallel loop self-scheduling schemes. In the first level, each computing node runs an MPI process for inter-node communications. In the second level, each processor core runs an OpenMP thread to execute the iterations assigned for its resident node. Experimental results show that our method outperforms the previous works.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.