Abstract

An established method for grey-box identification is to use maximum-likelihood estimation for the nonlinear case implemented via extended Kalman filtering. In applications of (nonlinear) model predictive control a more and more common approach for the state estimation is to use moving horizon estimation, which employs (nonlinear) optimization directly on a model for a whole batch of data. This paper shows that, in the linear case, horizon estimation may also be used for joint parameter estimation and state estimation, as long as a bias correction based on the Kalman filter is included. For the nonlinear case two special cases are presented where the bias correction can be determined without approximation. A procedure how to approximate the bias correction for general nonlinear systems is also outlined.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.