Abstract

The hippocampus is a subcortical structure in the medial temporal lobe involved in cognitive functions such as spatial navigation and reorientation, episodic memory, and associative learning. While much is understood about the role of hippocampal function in learning and memory in adults, less is known about the relations between the hippocampus and the development of these cognitive skills in young children due to the limitations of using standard methods (e.g., MRI) to examine brain structure and function in developing populations. This study used hippocampal-dependent trace eyeblink conditioning (EBC) as a feasible approach to examine individual differences in hippocampal functioning as they relate to spatial reorientation and episodic memory performance in young children. Three- to six-year-old children (N=50) completed tasks that measured EBC, spatial reorientation, and episodic memory, as well as non-hippocampal-dependent processing speed abilities. Results revealed that when age was held constant, individual differences in EBC performance were significantly related to individual differences in performance on the spatial reorientation test, but not on the episodic memory or processing speed tests. When the relations between hippocampal-dependent EBC and different reorientation strategies were explored, it was found that individual differences in hippocampal function predicted the use of geometric information for reorienting in space as opposed to a combined strategy that uses both geometric information and salient visual cues. The utilization of eyeblink conditioning to examine hippocampal function in young populations and its implications for understanding the dissociation between spatial reorientation and episodic memory development are discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call