Abstract

Chiral symmetry in QCD can be simultaneously in Wigner and Goldstone modes, depending on the part of the spectrum examined. The transition regime between both, exploiting for example the onset of parity doubling in the high baryon spectrum, can be used to probe the running quark mass in the mid-IR power-law regime. In passing we also argue that three-quark states naturally group into same-flavor quartets, split into two parity doublets, all splittings decreasing high in the spectrum. We propose that a measurement of masses of high-partial wave Delta* resonances should be sufficient to unambiguously establish the approximate degeneracy and see the quark mass running. We test these concepts with the first computation of the spectrum of high-J excited baryons in a chiral-invariant quark model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.