Abstract
An approximate wave function ansatz is presented which describes low-energy states of a highly clustered molecular system as a linear combination of multiple reduced-rank tensors. Using the Tucker decomposition as a way to obtain local clusters states, the exact solution is solved for in the space spanned by a small number of states on each cluster, with complete correlation occurring between limited numbers of clusters at a time. In this initial study, we report the implementation for a Heisenberg spin Hamiltonian with numerical examples of regular grid spin lattices, and ab initio-derived spin Hamiltonians used to analyze the approximation. From these results, we find that the proposed method works well when the Hamiltonian interactions within a cluster are larger than between a cluster, and when this is not true, the method is not effective.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.