Abstract

Professional summarizers often reuse original documents to generate summaries. The task of summary sentence decomposition is to deduce whether a summary sentence is constructed by reusing the original text and to identify reused phrases. Specifically, the decomposition program needs to answer three questions for a given summary sentence: (1) Is this summary sentence constructed by reusing the text in the original document? (2) If so, what phrases in the sentence come from the original document? and (3) From where in the document do the phrases come? Solving the decomposition problem can lead to better text generation techniques for summarization. Decomposition can also provide large training and testing corpora for extraction-based summarizers. We propose a hidden Markov model solution to the decomposition problem. Evaluations show that the proposed algorithm performs well.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.