Abstract
This article proposes a new method of obtaining identification in mismeasured regressor models, triangular systems, and simultaneous equation systems. The method may be used in applications where other sources of identification, such as instrumental variables or repeated measurements, are not available. Associated estimators take the form of two-stage least squares or generalized method of moments. Identification comes from a heteroscedastic covariance restriction that is shown to be a feature of many models of endogeneity or mismeasurement. Identification is also obtained for semiparametric partly linear models, and associated estimators are provided. Set identification bounds are derived for cases where point-identifying assumptions fail to hold. An empirical application estimating Engel curves is provided.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.