Abstract

This work uses harmonised life-cycle indicators of hydrogen to explore its role in the environmental performance of proton exchange membrane fuel cell (PEMFC) passenger vehicles. To that end, three hydrogen fuel options were considered: (i) conventional, fossil-based hydrogen from steam methane reforming; (ii) renewable hydrogen from biomass gasification; and (iii) renewable hydrogen from wind power electrolysis. In order to increase the robustness of the life-cycle study, the environmental profile of each hydrogen option was characterised by three harmonised indicators: carbon footprint, non-renewable energy footprint, and acidification footprint. When enlarging the scope of the assessment according to a well-to-wheels perspective, the results show that the choice of hydrogen fuel significantly affects the life-cycle performance of PEMFC vehicles. In this regard, the use of renewable hydrogen –instead of conventional hydrogen from steam methane reforming– is essential when pursuing low carbon and energy footprints. Nevertheless, the identification of the most favourable renewable hydrogen option was found to be conditioned by the prioritised life-cycle indicators.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.