Abstract

We demonstrate how fine-grained memory protection can be used in support of transactional memory systems: first showing how a software transactional memory system (STM) can be made strongly atomic by using memory protection on transactionally-held state, then showing how such a strongly-atomic STM can be used with a bounded hardware TM system to build a hybrid TM system in which zero-overhead hardware transactions may safely run concurrently with potentially-conflicting software transactions. We experimentally demonstrate how this hybrid TM organization avoids the common-case overheads associated with previous hybrid TM proposals, achieving performance rivaling an unbounded HTM system without the hardware complexity of ensuring completion of arbitrary transactions in hardware. As part of our findings, we identify key policies regarding contention management within and across the hardware and software TM components that are key to achieving robust performance with a hybrid TM.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.