Abstract

Genetic variation is now routinely screened at the DNA sequence level in many studies. If the DNA region being screened has not experienced excessive amounts of recombination, it is often possible to reconstruct the evolutionary history of the genetic variation in the form of a haplotype tree. This tree estimates the evolutionary pathway that interconnects all the different haplotypes (sequence variants) observed in the sample. This haplotype tree can be used to define a series of nested branches (clades) that reflects the relative temporal history of the haplotypes and groups of haplotypes. Geographical information can then be overlaid upon this temporal series to test for significant associations between geography and temporal position in the haplotype tree. This allows a reconstruction of how the genetic variation arose and spread in both space and time. Such reconstructions can yield many insights into the joint roles of recurrent events such as gene flow and of historical events such as fragmentation or range expansion. These points are illustrated with studies on the chub, Leuciscus cephalus. There is also a need to extend such nested phylogeographic analyses to a phylo/reticulate geographic analysis that incorporates both assortment and recombination between and within DNA regions. A preliminary phylo/reticulate geographic analysis is presented of the transferrin locus in the brown trout, Salmo trutta, species complex that reveals the importance of hybridization in the recent evolutionary history of this group. This example shows the inadequacy of a strictly phylogenetic approach and illustrates the need to incorporate reticulate evolution. The results of nested clade phylogeographic analysis and the new phylo/reticulate geographic analysis are then used for inferring species status of the marbled trout. The results indicate that an old hybridization event may have played a role in the origin of the marbled trout. Currently the marbled trout is primarily endangered by hybridization with introduced brown trout. These results show both the positive and negative impacts of hybridization upon biodiversity. Such phylo/reticulate geographic studies will challenge both our concepts of species and our conservation management strategies.Key wordshybridizationhistorydiversity

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call