Abstract

The black-footed ferret (Mustela nigripes) was driven to near extinction due to habitat loss and an introduced disease, sylvatic plague (Yersinia pestis). After 35years of breeding in ex situ facilities, the black-footed ferret has been experiencing infertility with seminal traits declining in males and only about a third of breeding-aged females are whelping. Our goal was to use hair cortisol analysis to determine if the ex situ population was experiencing chronic stress that was affecting reproduction by comparing captive ferrets to wild individuals. Our specific objectives were to (i) compare hair cortisol concentrations (HCCs) between age classes (juveniles versus adults), (ii) compare the HCCs of in situ and across different ex situ facilities and (iii) determine the relationship between HCCs and reproductive success. Overall, wild juveniles had higher HCC than wild adults. Our generalized linear mixed model determined that the parameters that best predict HCC for adults were the interactions among sex, in situ versus ex situ facilities and season. During both seasons, wild females had higher HCCs compared to the ex situ females. During the breeding season, male HCCs across breeding facilities varied and males at the breeding facility with the largest ferret habitats had HCCs similar to wild males. At one breeding facility, HCC was higher in males that sired compared to those that did not sire. In conclusion, ex situ ferrets do not have higher HCC than wild individuals when controlling for season and ex situ habitat size, and ex situ males with higher HCC tended to sire. This suggests that HCC may be metabolically driven and/or that low HCC may be an indication of hypothalamus-pituitary-adrenal axis dysregulation and warrants further investigation both for laboratory validation and biological relevance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.