Abstract
While membrane technology continues to thrive in seawater desalination, it would defeat the very purpose of saving the environment if toxic solvents are involved in membrane manufacture. As a paradigm of green chemistry, a non-toxic solvent, triethyl phosphate (TEP), was used for the first time to fabricate polyvinylidene fluoride (PVDF) hollow fiber membranes for direct contact membrane distillation (DCMD). The phase inversion kinetics of the PVDF/TEP system was closely investigated and compared with the conventional N-Methyl-2-pyrrolidone (NMP)/PVDF system. The former showed a less abrupt phase inversion rate and produced a more porous sponge-like structure than the latter. The 12/88wt% PVDF/TEP binary solution produced fibers with promising performance. They not only possessed robust mechanical properties and a liquid entry pressure up to 2.0bar but also exhibited an average flux of 20kg/m2·h at 60°C and a NaCl rejection of 99.99%. In addition, hollow fiber membranes spun from this PVDF/TEP system had porosity of greater than 83% for all conditions studied. Since there were no additives or non-solvents in the dope solutions and no post-treatments involved, the use of TEP as a green solvent could significantly reduce the complexity of membrane fabrication, scale up and commercialization. Clearly, the much safer solvent TEP is able to replace toxic solvents commonly used in membrane manufacture and to produce membranes with highly competitive performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.