Abstract
Recommender systems have revolutionized the way users discover and engage with content. Moving beyond the collaborative filtering approach, most modern recommender systems leverage additional sources of information, such as context and social network data. Such data can be modeled using graphs, and the recent advances in Graph Neural Networks have led to the prominence of a new family of graph-based recommender system algorithms. In this work, we propose the RelationalNet algorithm, which not only models user–item, and user–user relationships but also item–item relationships with graphs and uses them as input to the recommendation process. The rationale for utilizing item–item interactions is to enrich the item embeddings by leveraging the similarities between items. By using Graph Neural Networks (GNNs), RelationalNet incorporates social influence and similar item influence into the recommendation process and captures more accurate user interests, especially when traditional methods fall short due to data sparsity. Such models improve the accuracy and effectiveness of recommendation systems by leveraging social connections and item interactions. Results demonstrate that RelationalNet outperforms current state-of-the-art social recommendation algorithms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.