Abstract

High-density oligonucleotide (oligo) arrays are a powerful tool for transcript profiling. Arrays based on GeneChip® technology are amongst the most widely used, although GeneChip® arrays are currently available for only a small number of plant and animal species. Thus, we have developed a method to improve the sensitivity of high-density oligonucleotide arrays when applied to heterologous species and tested the method by analysing the transcriptome of Brassica oleracea L., a species for which no GeneChip® array is available, using a GeneChip® array designed for Arabidopsis thaliana (L.) Heynh. Genomic DNA from B. oleracea was labelled and hybridised to the ATH1-121501 GeneChip® array. Arabidopsis thaliana probe-pairs that hybridised to the B. oleracea genomic DNA on the basis of the perfect-match (PM) probe signal were then selected for subsequent B. oleracea transcriptome analysis using a .cel file parser script to generate probe mask files. The transcriptional response of B. oleracea to a mineral nutrient (phosphorus; P) stress was quantified using probe mask files generated for a wide range of gDNA hybridisation intensity thresholds. An example probe mask file generated with a gDNA hybridisation intensity threshold of 400 removed > 68 % of the available PM probes from the analysis but retained >96 % of available A. thaliana probe-sets. Ninety-nine of these genes were then identified as significantly regulated under P stress in B. oleracea, including the homologues of P stress responsive genes in A. thaliana. Increasing the gDNA hybridisation intensity thresholds up to 500 for probe-selection increased the sensitivity of the GeneChip® array to detect regulation of gene expression in B. oleracea under P stress by up to 13-fold. Our open-source software to create probe mask files is freely available and may be used to facilitate transcriptomic analyses of a wide range of plant and animal species in the absence of custom arrays.

Highlights

  • High-density oligonucleotide arrays are a powerful and widely used tool for large-scale gene-expression profiling [1]

  • Perfect-match A. thaliana probes which hybridised to the B. oleracea genomic DNA above selected hybridisation intensities were selected for subsequent B. oleracea transcriptome analysis using probe mask files generated using a .cel file parser script

  • Probe-selection was tested by quantifying the transcriptional response of B. oleracea to a mineral nutrient stress using probe mask files generated at gDNA hybridisation intensity thresholds ranging from 0 to 1000

Read more

Summary

Introduction

High-density oligonucleotide (oligo) arrays are a powerful and widely used tool for large-scale gene-expression profiling [1]. One extensively validated oligo array type is available as commercial GeneChip® technology (Affymetrix, Santa Clara, USA). GeneChip® arrays use probe-sets rather than single oligos per gene, comprising of between 11 and 20 probe-pairs to quantify abundance for each transcript. Transcript abundance can be calculated either from extrapolated hybridisation differences between PM and MM probes across a probe-set, or by using the PM data depending on the analysis used. An example of the wide-scale adoption of GeneChip® technology can be seen within the plant sciences research community, where data from thousands of GeneChip® arrays under large numbers of experimental challenges on the model plant Arabidopsis thaliana (L.) Heynh. At present, GeneChip® arrays are available for only a few species of eukaryotes. In contrast to A. thaliana, the transcriptomes of most agriculturally- or ecologicallyimportant plant species are less extensively studied, since extensive sequence information and the fabrication of expensive custom arrays would be required before experimentation can begin

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.