Abstract

The genome in situ hybridization (GISH) technique has become important for deciphering the organization of the constituent genomes in the allopolyploid plants that comprise many of the crop species. This technique comprises using the nuclear DNA from the constituent genomes as probes that have been labeled separately with different nucleotides that can be identified by using secondary antibodies. The Brassica family includes a range of mustard species with diverse phytochemical and morphological profile, hence making it an important plant family in agriculture. Meiosis is a specialized cellular division which brings the homologous chromosomes together and creates recombinants via pairing and synapsis during its early phase. Transfer of the genetic material within homoelog pairs creates novelty in subsequent generations which hold promise for improving the agriculture sector. This chapter is concerned with developing a GISH technique that discriminates between the constituent genomes in the allopolyploid B. juncea, in order to study meiosis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call