Abstract
Time-cost trade-off analysis is one of the most important aspects of industrial project planning and control. There are trade-offs between time and cost to complete the activities of a project; in general, the less expensive the resources used, the longer it takes to complete an activity. Existing methods for time-cost trade-off problems focus on using heuristics or mathematical programming. These methods, however, are not efficient enough to solve large scale CPM problems. This paper presents a Multi-Objective Genetic Algorithm (MOGA) approach to time-cost trade-off problems (TCTP). Finding optimal decisions is difficult and time-consuming considering the numbers of permutations involved. This type of problem is NP-hard, hence attainment of IP/LP solutions, or solutions via Total Enumeration (TE) is computationally prohibitive. The MOGA approach searches for locally Pareto-optimal or locally non-dominated frontier where simultaneously optimization of time-cost is desired. The application of the proposed algorithm is demonstrated through an example project a real life case. The results illustrate the promising performance of the proposed algorithm.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.