Abstract
The results of high-throughput experiments consist of numerous candidate genes, proteins, or other molecules potentially associated with diseases. A challenge for omics science is the knowledge extraction from the results and the filtering of promising gene or protein candidates. Especially, the hot topic in clinical scenarios consists of highlighting the behavior of few molecules related to some specific disease. In this contest, different computational approaches, also referred Gene prioritization methods, ensure to identify the most related genes to a disease among a larger set of candidate genes. The identification requires the use of domain-specific knowledge that is often encoded into ontologies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.