Abstract
In this study, our focus was on investigating H-1,2,3-triazole derivative HP661 as a novel and highly efficient oral OXPHOS inhibitor, with its molecular-level inhibitory mechanism not yet fully understood. We selected the ND1, NDUFS2, and NDUFS7 subunits of Mitochondrial Complex I as the receptor proteins and established three systems for comparative analysis: protein-IACS-010759, protein-lead compound 10, and protein-HP661. Through extensive analysis involving 500 ns Gaussian molecular dynamics simulations, we gained insights into these systems. Additionally, we constructed a Markov State Models to examine changes in secondary structures during the motion processes.The research findings suggest that the inhibitor HP661 enhances the extensibility and hydrophilicity of the receptor protein. Furthermore, HP661 induces the unwinding of the α-helical structure in the region of residues 726–730. Notably, key roles were identified for Met37, Phe53, and Pro212 in the binding of various inhibitors. In conclusion, we delved into the potential molecular mechanisms of triazole derivative HP661 in inhibiting Complex I. These research outcomes provide crucial information for a deeper understanding of the mechanisms underlying OXPHOS inhibition, offering valuable theoretical support for drug development and disease treatment design.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.