Abstract
To link short-term exposures of air pollutants to health outcomes, scientists must use high temporal and spatial resolution estimates of PM2.5 concentrations. In this work, we develop a daily PM2.5 product at 1 × 1 km2 spatial resolution across the eastern United States (east of 90° W) with the aid of 1 × 1 km2 MAIAC aerosol optical depth (AOD) data, 36 × 36 km2 WRF-Chem output, 1 × 1 km2 land-use type from the National Land Cover Database, and 0.125° × 0.125° ERA-Interim re-analysis meteorology. A gap-filling technique is applied to MAIAC AOD data to construct robust daily estimates of AOD when the satellite data are missing (e.g., areas obstructed by clouds or snow cover). The input data are incorporated into a multiple-linear regression model trained to surface observations of PM2.5 from the EPA Air Quality System (AQS) monitoring network. The model generates a high-fidelity estimate (r2 = 0.75 using a 10-fold random cross-validation) of daily PM2.5 throughout the eastern United States. Of the inputs to the statistical model, WRF-Chem output (r2 = 0.66) is the most important contributor to the skill of the model. MAIAC AOD is also a strong contributor (r2 = 0.52). Daily PM2.5 output from our statistical model can be easily integrated into county-level epidemiological studies. The novelty of this project is that we are able to simulate PM2.5 in a computationally efficient manner that is constrained to ground monitors, satellite data, and chemical transport model output at high spatial resolution (1 × 1 km2) without sacrificing the temporal resolution (daily) or spatial coverage (>2,000,000 km2).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.