Abstract

The frequent occurrence and long-term duration of Microcystis harmful algal blooms (HABs) are of great concern. Chemical flocculation is thought to be an effective way to deal with the HABs, while the application of the flocculants at a high dosage pose potential adverse impacts to the aquatic ecosystems. In this study, an alternative approach is proposed that involves the employment of polyaluminum chloride (PAC) combined with the Daphnia magna (D. magna) to achieve sustainable HABs removal efficiency with an acceptable ecological risk. It was found that under a dense Microcystis HABs (algal density of 1.5 × 107 cells/ml), a PAC dosage of 30 mg/l triggered >95% algae removal, but the released Al3+ caused 90% mortality of planktonic D. magna. Reducing the PAC dosage to 15 mg/l resulted in a slightly lower algal removal efficiency (>90%). In addition the reduced PAC dosage benefited the proliferation of the remaining unicellular algal cells, which tended to form a large colony during the 25-day experiment. Incubation of D. magna following flocculation with 15 mg/l PAC effectively grazed the remaining algal cells, meanwhile increasing the D. magna density by approximately 40-folds, and enlarging the body size by 1.37–1.50 times. This result implied that the released Al3+ was not detrimental to the D. magna. Flocculation with a reduced dosage is sufficient for colonial and large algal cells mitigation, which creates a window time for the biomanipulation of the residual tiny algae. Hence, the subsequent addition of D. magna triggered the sustainable removal of the HABs cells. The present study provides an environmentally friendly strategy for cleaning up the green tides without obvious detrimental effects on the aquatic ecosystem.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call