Abstract

Fast Lyapunov Indicator (FLI) maps are presented as a tool for solving spacecraft preliminary trajectory design problems in multi-body environments with long-term stability requirements. In particular, the FLI maps are shown to provide a global overview of the dynamics in the restricted three-body problem that can guide mission designers in selecting long-term stable regions of phase space which are inherently more robust to model parameter perturbations. The FLI is also shown to numerically detect the normally hyperbolic manifolds associated with unstable periodic orbits. These, in turn, provide a global map of the principal heteroclinic connections between the various resonance regions which form the basic backbone of dynamical transfers design. Examples of maps and transfers are provided in the restricted three-body problem modeling the Jupiter–Europa system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call