Abstract

Among various redox flow batteries (RFBs), the all-iron RFBs have greater application potential due to high accessibility of electrolytes. However, the potential of microaerobic ferrous-oxidizing bacteria (FeOB) to improve the performance of RFB has been neglected. Here, several experiments were conducted using Fe2+-diethylenetriaminepentaacetic acid (DTPA)/Na3[Fe(CN)6] as a redox couple for investigating the enhanced performance by FeOB in this RFB. Results showed that the maximum current density of experimental reactors could achieve 22.56 A/m2 at 0.1 M, whereas power density could still maintain 3.42 W/m2(16.96 A/m2 and 1.58 W/m2 for control group); meantime, the polarization impedance of anode increased slower and Fe2+-DTPA oxidation peak emerged maximum 494mV negative shift. With increased electrolyte concentration in chronopotentiometry experiments, the experimental reactor achieved higher discharging specific capacity at 0.3 M, 10 mA/cm2. Microbial composition analysis showed maximum 75% is Brucella, indicating Brucella has ferrous-oxidizing electroactivity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.