Abstract

SCFG-based statistical MT models have proven effective for modelling syntactic aspects of translation, but still suffer problems of overgeneration. The production of German verbal complexes is particularly challenging since highly discontiguous constructions must be formed consistently, often from multiple independent rules. We extend a strong SCFG-based string-to-tree model to incorporate a rich feature-structure based representation of German verbal complex types and compare verbal complex production against that of the reference translations, finding a high baseline rate of error. By developing model features that use source-side information to influence the production of verbal complexes we are able to substantially improve the type accuracy as compared to the reference.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.