Abstract

<p>Climate change knowledge can inform regional and local adaptation decisions. However, estimates of future climate are uncertain and methods for assessing uncertainties typically rely on the results of climate model simulations, which are constrained by the quality of assumptions used in model experiments and the limitations of available models. To strengthen knowledge for adaptation decisions, we use structured expert elicitation to assess future climate change in the Lower Yangtze region in China. We elicit judgements on future changes in temperature and precipitation as well as uncertainty sources, comparing elicited judgements and model outputs from phase 5 of the Couple Model Intercomparison Project (CMIP5). We find high consensus amongst experts that the Lower Yangtze region will be warmer in the coming decades, albeit with differences in the magnitude of change. There is less consensus around the direction and magnitude of change for future precipitation change in the region. When compared with CMIP5 model outputs, experts provide similar or narrower uncertainty ranges for temperature change and diverse ranges for precipitation. Experts considered additional factors (e.g. model credibility, observations, theory and paleo-climatic evidence) and uncertainties not usually represented in conventional modelling approaches. We explore the value in bringing together multiple lines of evidence in the context of climate services, arguing that while decision makers should not rely solely on expert judgements, this information can complement model information to strengthen regional climate change knowledge. These multiple lines of evidence can help in building dialogue between climate experts and regional stakeholders, contributing to the development of climate services. </p>

Highlights

  • OSA1.3 : Meteorological observations from GNSS and other space-based geodetic observing techniques OSA1.7: The Weather Research and Forecasting Model (WRF): development, research and applications

  • OSA3.5: MEDiterranean Services Chain based On climate PrEdictions (MEDSCOPE)

  • UP2.1 : Cities and urban areas in the earth- OSA3.1: Climate monitoring: data rescue, atmosphere system management, quality and homogenization 14:00-15:30

Read more

Summary

Introduction

OSA1.3 : Meteorological observations from GNSS and other space-based geodetic observing techniques OSA1.7: The Weather Research and Forecasting Model (WRF): development, research and applications. EMS Annual Meeting Virtual | 3 - 10 September 2021 Strategic Lecture on Europe and droughts: Hydrometeorological processes, forecasting and preparedness Serving society – furthering science – developing applications: Meet our awardees ES2.1 - continued until 11:45 from 11:45: ES2.3: Communication of science ES2.2: Dealing with Uncertainties

Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call