Abstract

Previously, we investigated survival prognosis of glioblastoma by applying a gene regulatory approach to a human glioblastoma dataset. Here, we further extend our understanding of survival prognosis of glioblastoma by refining the network inference technique we apply to the glioblastoma dataset with the intent of uncovering further topological properties of the networks. For this study, we modify the approach by specifically looking at both positive and negative correlations separately, as opposed to absolute correlations. There is great interest in applying mathematical modeling approaches to cancer cell line datasets to generate network models of gene regulatory interactions. Analysis of these networks using graph theory metrics can identify genes of interest. The principal approach for modeling microarray datasets has been to group all the cell lines together into one overall network, and then, analyze this network as a whole. As per the previous study, we categorize a human glioblastoma cell line dataset into five categories based on survival data, and analyze each category separately using both negative and positive correlation networks constructed using a modified version of the WGCNA algorithm. Using this approach, we identified a number of genes as being important across different survival stages of the glioblastoma cell lines.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.