Abstract

AbstractThe widespread use of herbicides in cropping systems has led to the evolution of resistance in major weeds. The resultant loss of herbicide efficacy is compounded by a lack of new herbicide sites of action, driving demand for alternative weed control technologies. While there are many alternative methods for control, identifying the most appropriate method to pursue for commercial development has been hampered by the inability to compare techniques in a fair and equitable manner. Given that all currently available and alternative weed control methods share an intrinsic energy consumption, the aim of this review was to compare methods based on energy consumption. Energy consumption was compared for chemical, mechanical, and thermal weed control technologies when applied as broadcast (whole-field) and site-specific treatments. Tillage systems, such as flex-tine harrow (4.2 to 5.5 MJ ha−1), sweep cultivator (13 to 14 MJ ha−1), and rotary hoe (12 to 17 MJ ha−1) consumed the least energy of broadcast weed control treatments. Thermal-based approaches, including flaming (1,008 to 4,334 MJ ha−1) and infrared (2,000 to 3,887 MJ ha−1), are more appropriate for use in conservation cropping systems; however, their energy requirements are 100- to 1,000-fold greater than those of tillage treatments. The site-specific application of weed control treatments to control 2-leaf-stage broadleaf weeds at a density of 5 plants m−2 reduced energy consumption of herbicidal, thermal, and mechanical treatments by 97%, 99%, and 97%, respectively. Significantly, this site-specific approach resulted in similar energy requirements for current and alternative technologies (e.g., electrocution [15 to 19 MJ ha−1], laser pyrolysis [15 to 249 MJ ha−1], hoeing [17 MJ ha−1], and herbicides [15 MJ ha−1]). Using similar energy sources, a standardized energy comparison provides an opportunity for estimation of weed control costs, suggesting site-specific weed management is critical in the economically realistic implementation of alternative technologies.

Highlights

  • Weeds pose the highest potential for yield loss of all crop pests, constituting a significant threat to food security and agricultural productivity among key food (wheat [Triticum aestivum L.], soybean [Glycine max (L.) Merr.], and rice [Oryza sativa L.]) and fiber crops (Oerke 2006)

  • With fewer herbicide options available and into the foreseeable future, effective weed control in cropping systems will be reliant on the introduction of highly effective alternative weed control technologies

  • This paper presents standardized energy consumption levels to capture the diversity of control options available for various crop and weed development environments

Read more

Summary

Introduction

Weeds pose the highest potential for yield loss of all crop pests, constituting a significant threat to food security and agricultural productivity among key food (wheat [Triticum aestivum L.], soybean [Glycine max (L.) Merr.], and rice [Oryza sativa L.]) and fiber (cotton [Gossypium hirsutum L.]) crops (Oerke 2006). Effective weed control is essential for viable crop production, with herbicides the primary weed control technology used. The many advantages of herbicides over other weed control technologies (high efficacy, selectivity, low cost, etc.) has led to reliance on this form of weed control in cropping systems. A consequence of this is the widespread evolution of herbicide-resistant weed populations throughout the world’s cropping regions (Heap 2019). With fewer herbicide options available and into the foreseeable future, effective weed control in cropping systems will be reliant on the introduction of highly effective alternative weed control technologies

Objectives
Methods
Findings
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call