Abstract

Using a modeling methodology developed in our laboratory previously, the free solution electrophoretic mobilities of several peptides are examined to see what they can tell us about: (i) the pK(a)s of specific side groups, and (ii) possible secondary structure. Modeling is first applied to mobility versus pH data of several small peptides (Messana, I. et al., J. Chromatogr. B 1997, 699, 149) where the only adjustable parameter associated with the charge state of the peptide is the pK(a )of the C-terminal. In addition to examining this parameter, the question of possible secondary structure is addressed. For two of the peptides considered, GGNA and GGQA, it is possible to account for the observed mobilities using "random" models with little restriction on the allowed range of Phi-Psi angles. For GGRA and RPPGF, "compact" models (possibly involving an I-turn) must be used to match modeling mobilities with experiment. Finally, three more complicated peptides ranging in size from 15 to 20 amino acids are also examined and characterized (Sitaram, B. R. et al., J. Chromatogr. A 1999, 857, 263). Here also, we find evidence of I-turns or some other "compact" structure in two of the three peptides examined.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.