Abstract

Pie de Cuesta is a large landslide with a planar area of 1 km2 located in the Vítor district, in the Arequipa department (Peru), and constitutes an active phenomenon. It belongs to the rotational/translational type, which concerns cases that are very susceptible to reactivation because any change in the water content or removal of the lower part can lead to a new instability. In this context, a previous geological study has been decisive in recognizing the lithologies present and understanding their behavior when they are saturated. But it is also necessary to know the inner “landslide geometry” in order to gusset a geotechnical diagnosis. The present study shows how the deep electrical profiles (ERT, electrical resistivity tomography method), supported by two Vp seismic refraction tomography lines (SVP), have been used to create a 3D cognitive model that would allow the identification of the inner landslide structure: the 3D rupture surface, the volume of the sliding mass infiltration sectors or fractures, and the preferred runoff directions. Moreover, on large landsides, placing the geophysical profiles is a crucial aspect because it greatly depends on the accessibility of the area and the availability of the physical space required. In our case, we need to extend profiles up to 1100 m long in order to obtain data at greater depths since this landslide is approximately 200 m tall. Based on the geophysical results and geologic information, the 3D final model of the inner structure of this landslide is presented. Additionally, the main runoff water directions and the volume of 90.5 Hm3 of the sliding mass are also estimated.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call