Abstract

Abstract Controlling the self-assembly of carbon nanotube (CNT) forests is important for tailoring their ensemble properties for specific applications. In this study, real-time electrical resistance measurements of in-situ CNT forest syntheses was established as a method to interrogate the evolution of CNT forest morphology. The method employs in-situ scanning electron microscopy (SEM) synthesis techniques to correlate observed morphological changes to electrical resistance. A finite-element simulation was used to simulate CNT forest synthesis and the evolution of electrical resistance in a configuration like that used experimentally. The simulation considers the contribution of CNT electrical resistance, CNT-CNT junction resistance, and CNT-electrode contact resistance. Simulation results indicate that an increased number of CNT-CNT junctions with time have a diminishing effect on increasing electrical conductance. Experimentally observed increases in electrical resistance are attributed to increasing CNT delamination from the electrical contacts.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.